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SUMMARY

In this report we present a brief description of the research carried

out by faculty, staff, and students in the M.I.T. Laboratory for Information

and Decision Systems under Grant AFOSR-82-0258. The principal investigator

for this research is Professor Alan S. Willsky, and Prof. George C. Verghese

serves as a senior researcher on the project. The time period covered in

this status report is from January 1, 1983 to December 31, 1983.

- The basic scope of this grant is to carry out fundamental research in

the analysis, control, and estimation of complex systems, with particular

emphasis on the use of methods of asymptotic analysis and multiple time

scales to decompose complex problems into interconnections of simpler ones.

During the time period covered by this report, significant progress has

been made in several areas, leading to important results and to promising

directions for further research.

The specific topics covered in this report are:

'T\ Analysis of Systems Possessing Multiple Time Scales. O

Control and Estimation.

A list of publications supported by this grant is also included. We refer

heavily to these papers and reports for detailed technical developments.
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I. Analysis of Systems Possessing Multiple Time Scales

During the past year we have made significant progress in this portion

of our research. Our recent work in this area is described in more detail

in [7], [9], [11]. This work has focused on the examination of systems of

the form

x(t) = A(E)x(t) (1.1)

where E is a small parameter. In our earlier work [11, (4] we had developed

a method for determining when it is possible to construct and for construct-

ing an approximation to the solution of (1.1), of the form

At Alt Ar~t

x(t) = e e A e x(0) + O(E) (1.2)

4 where A.A. = 0 if i d j and (1.2) is uniformly valid on 0 < t < -. Thus
1)3

(1.2) says that one can construct an E-independent similarity transfor-

mation = Tx which puts the system (1.1) into a block-decoupled form which

explicitly decomposes the system into subsystems evolving at different

time-scales -- i.e.

F t Fl t F Crt
diag (e e , , e )&(0) + O(E) (1.3)

The motivation for this line of research came from a desire to extend

the results and approaches developed by others, including Kokotovic,

Campbell, O'Malley, Chow, Hoppensteadt, Khalil and Sannuti, who have

demonstrated the utility of time-scale decompositions for system analysis,

approximation, control, and estimation. The starting point for much of

this work is a model of the form of (1.1) but in which the time-scale

structure is explicitly displayed. For example, consider the two-time-

scale model studied extensively by Kokotovic and co-workers:

zez-a~*. ** .. .. .. . *~ * ~*d%



F;11 [11 1 A
I = -12 (1.4)

x2J CA2 1 CA22 x2

(The form actually used in many of these other works can be brought to (1.4)

by a simple change of time-scale). For this model there is an extremely

straightforward procedure for determining if a two-time-scale decomposition

exists and, if so, for computing the fast and slow parts of the dynamics --

i.e. for constructing the similarity transformation which puts the system

into the form of (1.3) (with r = 2).. From this perspective we can view

the contribution of [1] as determining the existence of and constructing

such transformations when the time-scale behavior of the system is not

evident by inspection. The price that was paid in [2], however, was a

rather complex procedure involving nested projections and pseudo-inversions.

Our work [73, [9] in the past year has had as its goal the development

of a methodology for analyzing (1.1) which combines the generality of [1]

with the intuitive and algebraically simple results associated with models

such as (1.4). We have now done this, and not only does this provide a

very clear connection between our earlier work and the work of others, but

it also establishes an algebraic framework for examining numerous other

problems involving systems with multiple time scales.

The basis for our approach is to view A(E) as a matrix over the

(local) ring W of functions of E that are analytic at £ = 0. The matrix

A(C) then has a Smith decomposition

A(C) = P(C)D(C)Q(e) (1.5)

where P(C) and Q(C) are unimodular, i.e. IP(O) I # 0, IQ(O) I # 0 and
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D() = diag (e 1 E.,m 1 (1.6)

where 0 < iI < "'" < im , and the identity matrices I. may have different-l m

dime. 3ions. (We have assumed here that A(E) is nonsingular on some interval

of the form (0, E0 ); in the more general case D(E) would also include a zero

diagonal block). The diagonal elements of D(E) are the invariant factors of

A(E).

As described in [7], because of the unimodularity of P(E), one can show

that a uniform approximation of x(t) with the same time scale structure as

(1.1) is P(O)z(t), where

= D(E)Az , A - Q(0)P(0) (1.7)

Note that this system is in a form that is the natural generalization of

(1.4) :

-£ E Al 1 A 12 . AlIm z 1
i i2  i22 = I CA21 22 2 2

i i i .

*~ C MA M1 E.A C . A m z m
&m mml L Am 2  " EAmm_

Consequently there is a relatively straightforward procedure -- involving

successive Schur complements of A -- for determining if (1.8) (and hence

(1.1)) has well-behaved time scales, and for constructing the transformation

which brings (1.8) (and thus (1.1)) into diagonalized time-scale form (as

in (1.3)).

This result is, in our opinion, of great significance, as it makes

clear the essential algebraic nature of the problem of time-scale decom-

positions. In particular, it establishes the fact that the invariant

factors of A(C) determine the time scale structure of (1.1). This opens
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the door to the detailed examination of numerous other problems, some of

which we have begun to examine and others which wait for the near future.

Some of these are as follows:

(1) Important issues in the design of feedback control for complex

systems are the way in which feedback couplings should be structured and the

effect such couplings have on overall system performance. Such effects

can be quite dramatic as has been documented in numerous examples of control

designs based on reduced-order models (neglecting, for example, fast

dynamics) which lead to closed-loop instabilities or severe performance

degradations. A natural question to ask in the context we have described

is the effect of feedback on time-scale structure. From our results we

see that a key question is that of invariant factor assignment -- i.e.

the changing of invariant factors (and hence time scales) by feedback.

We have obtained some important results in this area, but we defer dis-

cussion of these to the following section.

(2) The key computational aspect of our time scale decmoposition

-a,. procedure is the determination of the Smith decomposition (1.5), (1.6).

We have been able to relate this computation explicitly to the projections

and pseudo- inversions in our earlier method [2]. Procedures exist for

the computation of Smith forms, and we have begun to examine the

implementation of such algorithms for the numerical computation of time

t P. Van Dooren, P. Dewilde, and J. Vandewalle, "On the Determination of

the Smith-McMillan Form of a Rational Matrix from Its Laurent Expansion,"
IEEE Trans. Circuits and Systems, March 1979.

G. Verghese and T. Kailath, "Rational Matrix Structure," IEEE Trans. Aut.
Control, Vol. AC-26, No. 2, pp. 434-439, April 1981.

'9%
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scale decompositions of systems of the form of (1.1).

(3) The form (1.5), (1.6) provides us with the basis for answering

another question we had posed in our proposal for this project. Specifically,

consider the problem of characterizing matrices A (E) and A (s) that have
1 2

identical time-scale behavior -- i.e. they both have the same approximation

in (1.2) -- so that the difference A 2(E) - A1 () is a regular perturbation

of A (E). Clearly one necessary condition is

D (E} = D (E) (1.9)
1 2

This, together with the condition

P1 (0) = P2 (0), Ql(0) = Q2 (0)

form a set of sufficient conditions, but the latter is not necessary because

of the nonuniqueness of P and Q in the Smith decomposition. More generally

one could allow

P (0) = P2(0)R , QI(0) = R- A 2(0) (1.10)

where R is a block-diagonal similarity transformation with blocks of sizes

equal to those in DI(E), but even this is not a necessary condition, since

one can essentially add slow modes to faster ones without affecting asymp-

totic behavior. For example,

A~ L oC) 0 C

and

() 1 1 [ 01 [-1 -el
[ :] I- =1 I-

-- .. I. * %%%* ~ . , " .'*''''' .'. ' * .-'. "',: .• ' -" :."' " -



I 8

have the property that

AI(e) t A2( )t

lm sup lie A - e A2 I = 0
e40 t>O

This suggests that upper-block diagonal transformations (with identities

along the diagonal) on the right of P do not affect asymptotic equivalence,

and the same is true of lower-block diagonal transformations (with identities

along the diagonal) on the left of Q. We are presently completing the

verification of necessary and sufficient conditions along these lines (and

also allowing transformations as in (1.10)) for our notion of asymptotic

equivalence.

(4) The fact that our method yields an algebraic connection between

(1.1) and the explicit form of (1.7) provides us with a basis for evaluating

bounds on convergence rates of time-scale approximations. Specifically,

we have kpegun to investigate the construction of such bounds in terms of

I lP(e) - P(0)II, JIQ(e) - Q(0)11, and the Schur complement structure of

Q(0)P(0). The work described in (6) to follow on higher order corrections

to the time-scale approximation (see (1.19) - (1.22)) will also be of

value here in providing a method for pinpointing the lead-order error

terms.

(5) Points (3) and (4) above are extremely important in shedding light

on theoretical problems in practical time-scale decomposition. In parti-

cular, it is rarely the case that a system is given in the form (1.1) with

a small parameter identified. Rather, one is interested in starting with

a system in the form

) Fx(t)



identifying a small number C and writing

F = i BiC (1.12)

so that the resulting time-scale approximation based on this representation

is accurate to within some prescribed tolerance. This problem raises

numerous issues. For example, which small elements of F should be viewed

2as order 1, as order C, as order £ , etc.? Intuitively one must have that

I P(E:) - P(O)II is sufficiently smaller than the minimum singular value

of P(O) (similarly for Q(e) and Q(O))so that it is fair to view the

difference P(C) - P(O) as a negligible (i.e. regular) perturbation of F

in the sense of (3). We plan to build on such insights in order to

develop a constructive procedure for determining accurate time scale

decompositions of systems as in (1.11).

(6) There are numerous ties to other research areas -- almost-

invariant subspaces and implicit systems (i.e. systems of the form

Ek = Ax), to name two -- which we feel can be illuminated significantly

using the algebraic framework we have developed.

(7) We have also begun to use the results obtained to date to

examine more closely the conditions A(E) must satisfy in order for there

to exist an approximation as in (1.2). In particular, there are two ways

in which a system can fail to satisfy the conditions. Either A(E) vio-

.". lates the so-called multiple semisimple nullstructure (MSSNS) condition

(2] or it satisfies this but violates the multiple semistability

condition (ME3T). If the first of these is violated it means that in

the procedure for constructing the Ai in (1.2) (either as in [1) or via

Schur complementation as in [7], [9]) one encounters one of these matrices

9' . . .. - - - . . . . _ . - . - . . -. - ., . . . . , - . , , . . , ,,, ., . - .. -. - -, . - - '
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which has a Jordan block of size greater than lx 1corresponding to the

zero eigenvalue. For example,

iA(C) =(1.13)

is asymptotically stable for any c > 0 but it does not have a uniform

approximation as in (1.2) Note that the Jordan form of A(E) changes

abruptly at E = 0 which indicates that there must exist a singularity

at e = 0 in the similarity transformation that brings A(E) to Jordan

form. For this reason we have begun to study alternative canonical forms

of A(c) and in particular the relationship between the Smith decomposition

and the eigenstructure of A(E). A conjecture which we are in the process

of examining is that the eigenvalues of A(C) are of orders of E exactly

equal to the invariant factors if and only if A(E) has MSSNS. This fact,

if true, will also be of great value in several control problems we are

* * considering.

The point we have just made -- that a violation of the MSSNS con-

dition corresponds to singularities in the similarity transformation that

-'* brings A(E) to Jordan form -- suggests another related problem on which

we have made progress recently. Specifically this problem is concerned

with using C-dependent similarity transformations of A(C) which are singular

A at 0 and cancel the singularities in the Jordan similarity transformation.

That is, if A(E) does not have MSSNS, we are concerned with constructing

a transformation T(C) so that

A(E) = T(S)A()T-I(E) (1.14)

does have MSSNS. What this in essence does is identify those components

of x(t) which require scaling, an idea which has been used by Sannuti

.. ...-.. . .<* * ~, ~
V h° o Vo'%



and Wason . Again our work to date indicates that the algebraic approach

we have developed provides precisely the correct framework for answering

this question in the Simplest and most illuminating fashion. As an

example, consider

- 11
A(E) = (1.15)

If we scale the statei0
x xx (1. 16)

V0 1

we find that

A(s-) 0 (1.17)

which does satisfy the MSSNS condition. Note that the invariant factors

of A(E) are 1 and C2 while both invariant factors of A(E) are E in-

dicating this this system has only one time scale.

In [11] we have considered an alternative approach to the problem

of deriving approximations for a particular class of systems which

violate the MSSNS condition. In particular in this paper we examine a

specific model strxdcture commonly used in analyzing interconnected

power systems. Specifically we have considered models of the form

P. Sannuti and H. Wason, "Singular Perturbation Analysis of Cheap Control

Problems," Proc. 22nd IEEE Conf. on Decision and Control, San Antonio,
Texas, Dec. 1983

P. Sannuti and H. Wason, Int. J. Contr., Vol. 37, 1983, pp. 1259-1286.

4%u.i
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where F(C) is an infinitesimal stochastic matrix. Because of this, F(E)

has a fixed zero eigenvalue and thus A(O) doesn't have semisimple null

structure. However, using the results in [2) on aggregation of finite-

state Markov processes we are able to derive an approximation which in

essence corresponds to keeping the dominant term is each element of

exp(A(C)t}. For the class of systems considered in [11] this can be

accomplished in a relatively simple and intuitively appealing fashion.

We are at present considering generalizations to other systems, and the

development of a precise definition of the way in which one should think
t

of this approximation as being good. For example, c(t) = e is a "good"

approximation of x(t) = e (l+E)t in the sense that the coefficient

multiplying t in the exponent of

.v . .,,x(t)
X(t)

is of strictly higher order in e (which is not true of e (0.9)t or

N e l  , for example).

The second way in which a system can fail to have an approximation

as in (1.2) is if it satisfies the MSSNS condition but not theiMSST

qf"J condition. This could happen for one of two reasons. One possibility

is that there are unstable poles such as (E + £ 2). The leading term

approximation described in the preceding paragraph is aimed at such a

situation. The other possibility is that A(E) is stable for c > 0

but some of the eigenvalues of one of the A. in (1.2) are purely

imaginary. This corresponds to a situation in which the rate of

4.

.-•
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oscillation in a complex mode is of lower order (and hence faster) than

the damping. Consider for example

A(s) = (i. 18)

,. which yields responses of the form e sin t.

What we are considering in such cases is the inclusion of higher-

order terms in the asyptotic expansion, or, equivalently allowing the

.N A. in (1.2) to violate the condition A.A. = 0. To see how such a
i 1i) -i

decomposition might be obtained, consider y(t) = P (E)x(t). Then

S(t) = D(E)A(E)y(t), A(s) = Q(s)P(s) (1.19)

Compare this to the process z(t) defined in (1.7). If we define the

19correction process"

' '- :"-D (S)At
w(t) = e y(t) (1.20)

we find that

i.% -D(5)t eD (5)At]

w(t) = [-D(C)A + e AtD(E)A(S)e I w(t) (1.21)

. and an investigation of the structure of the matrix in (1.2) should

identify the desired higher-order corrections. As a very simple example,

consider again (1.18). In this case

".w(t) = w(t) (1.22)
0,.]

Our present work along the lines just described is quite close to

providing a general procedure for approximating dynamics of the form

of (1.1) which violate the conditions for (1.2) to exist. Such a pro-

.4 cedure would involve c-dependent similarity transformations to obtain a

- d transformed system which satisfies the MSSNS condition, leading-order

' ;-, ,, , ,-~~~~~~~~~~~~~~~~. . .........-... ... ,...................,...-.............-.-... - ;.,.:.-
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approximations for unstable modes of systems which satisfy MSSNS but have

complex poles with real parts of higher order than imaginary parts.

As an example of a system which requires two of these steps, consider

again A(E) in (1.13). If we scale A(E) as in (1.14) with

[ E 1 / 2 ( 1 .2 3 )

we obtain

I1E)= (1.24)

which is essentially of the same form as in (1.18) (one need only identify

E 1/2 as the fundamental parameter rather than E and perform a simple

time scaling).

I
*6

J
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II. Control and Estimation

Our research in this area has had two major thrusts. The first of these

builds directly on the tools decribed in the preceding section. Specifically

we have focused attention on an examination of systems of the form

* x(t) = A(E)x(t) + B(E)u(t) (2.1)

y(t) = C(E)x(t) (2.2)

Our ultimate aim is to develop a complete picture of how time-scales, weak

couplings, and differences in the scales of controllability and observability

of various components of the state and in the weightings of states and controls

in the system design criterion interact in determining the structure of

control designs. Our goal is to develop constructive procedures for designing

hierarchical or decentralized control systems which take into account these

scaling differences to achieve nearly optimal performance.

Notable contributions have been made on various aspects of this subject,

but much remains to be done. Our results to date indicate that the algebraic

approach outlined in the preceding section provides an excellent framework

for examining this subject, for obtaining results which extend considerably

what is known at present, and for shedding substantial light on the nature

of problems of this type by uncovering and explicitly examining the critical

mathematical constructs which form the heart of these problems. For example,

as indicated in the preceding section, our results have shown that the
".%

invariant factors of A(e) determine the open-loop time scales of (2.1),

assuming that the MSSNS condition is satisfied (if is is not, some scaling

4 must be performed as described in Section I). Consequently a natural

question to ask is to determine precisely how the invariant factors of

(2.1) can be modified by feedback of the form
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U(t) = K( )x(t) (2.3)

(where K(E) is again a matrix over the ring of functions analytic at E=O).

By allowing E-dependence in (2.3) we are in essence considering the

question of feedback structure. That is, the matrix K(O) determines which

states are strongly coupled to which controls, the matrix

K(E)-K(0)
C

determines the next level of coupling in the hierarchy, etc.

At this time, we have obtained important results on invariant factor

assignment [7], [9]. In particular if A(E) and B(C) are left coprime,

i.e., if CA(O)!B(O)] has full row rank, then the closed-loop system matrix

F(E) = A(e) + B(6)K((E) (2.4)

can have no more than b = rank B(O) non-unit invariant factors, and these
J Jb 0b factors can be made to equal an arbitrary set C ,... ,E (with E = 1,

= 0) by an appropriate choice of K(E) which we can construct explicitly.

This result opens the way for the consideration of numerous other problems:

(1) Precisely how can the eigenvectors of F(c) be controlled as well

as the invariant factors? That is, how can we influence which states

evolve at which time scales?

(2) Can K(E) be chosen so that desired invariant factors are achieved

and F(:) has MSSNS? If not, characterize the required scaling of F(E).

(3) Note that if b = rank B(0) < m = rank B(E) for C>0, our result

indicates that fewer time scales can be affected than we have independent

controls. In such a case, some of the controls are uniformly weak, and the

only way in which time scales could be influenced in general is by high

o 5-%
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gain -- i.e. by allowing terms of the form l/E in K(c) or equivalently by

allowing input scaling

u(t) = S(E) (t) (2.5)

so that

i(t) = A(E)x(t) + B(E)u(t) (2.6)

where B(C) = B(e)S (E) is still analytic at E=O and has the property that

B(0) is of full rank. For example, the time scale of

= -x + Eu (2.7)

can be charged by using feedback of the form

1u= (1+K(C))x (2.8)

(4) Another important problem is the case when [A( )*B(s)] does not

have full row rank. In this case, there are two avenues of investigation.

The first of these involves the use of scaling of the inputs and possibly

the states to achieve the coprime and B(0) full rank conditions. In our

other approach, we suppose that we are restricted to using K(E) which are

analytic at C=0 (and thus perform no input scaling). In this case F(E)

is of the form

F(E) - W(C)F(e), F(e) = A(E) + B(c)K(E) (2.9)

where W(C) is a greatest common left divisor of A(), B(C), and A(E), B(e)

are coprime. If the invariant factors of F(E), W(C), and F(E) are denoted

by fi(C), wi(E), and fi(E) and are ordered such that the ith one divides

the (i+l)-th one, we have that

wi(C ) If i ( E) and fi ( C) 1fi ( E) (2.10)



The first condition shows that every invariant factor of F(E) must contain

the corresponding invariant factor of W(C). The f. (E) are governed by our1

result in the coprime case, and thus some conclusions about the f. (E) can1

be drawn from the second divisibility condition in (2.10). Note that this

does not provide a complete solution, and open questions remain. In

particular, in (9] we present a result on one set of conditions under which

fi(E) = wi(eifi(C). Work on more complete characterizations of f'1 (E) in other

cases is continuing.

(5) There are close ties between our work and several other research

areas which we have begun to explore and develop. In particular questions

such as (1) are related to the much broader subject of the geometric

structure of (2.1) which in turn has ties to the work on almost (A,B)

invariant subspaces of Willems . In our case we have additional structure,

however, provided by the various scales defined by increasing orders in

E. Also, just as the work of Willems has close ties to the topic of high

gain feedback, so does our work, and we plan to explore this avenue. In

particular we have begun to examine the interpretation and extension of the

approach of Sannuti and Wason (referenced earlier) to our framework. As

a final point, we note that it is certainly possible to consider choices

of input scaling so that B() has singularities at £=0. This appears at

least cosmetically to be more closely tied to work such as that on cheap

control and high-gain feedback. However, if B(C) contains terms of the form

1/cn , a simple time scaling (so that the fastest time scale is the "new"

J.C. Willems, "Almost Invariant Subspaces: An Approach to High Gain Feed-
back Design -- Part I: Almost Controlled Invariant Subspaces,"
IEEE Trans. on Aut. Control, Vol. AC-26, 1982, pp. 235-252.
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time variable t) removes these singularities. Consequently our investigation

will allow us to consider high gain by a simple time scale identification.

Another area [9] in which we have begun work is in the examination of a

generalization of the cheap control problem which allows the open-loop system

to have several time scales and allows differences in the scales at which

different states and controls are weighted. Specifically,consider the problem

of choosing a control law for (2.1) to minimize

O

j = f [x' (t)Q( )x(t) + u' (t)R(E)u(t)]dt (2.11)
0

The Hamiltonian matrix for this problem is

A (E) -B(C)R- I (E)B' (E)
H(C) = (2.12)

-A ' 
1

Define 0 F() and b (E) as the positive definite solutions of the algebraic

Riccati equations

0f(E)A(C) + A' (C)F (E) - EF ()B(E)R- (E)B' (E)0 (C) + Q(E) = 0 (2.13a)

Gb ()A(E) + A' (C)Gb(E) + Eb(E)B(E)R- (E)B'() 0b(E) - Q(E) = 0 (2.13b)

Then one can construct a similarity transformation

E)9 (E:) -

T(E) = (2.14)
01b (C) -I

operating on H(e) to yield

( - () Ef b()B()R-1(E)B ' (E)

(2.15)
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" which indicates the well-known result that the eigenvalues of H(E) are also

Athose of the optimal closed-loop system. This suggests that if H(E) has

MSSNS, invariant factor analysis of H(E) may yield the time-scale structure

of the closed-loop system. However, the similarity transformation bringing

H(E) to the form (2.15) is unimodular if and only if EF(E) + 0b(c) is

unimodular, which will not be the case in nearly singular control problems.

This obviously points to the need for scaling and to the roles of (F(C),

b (C), and H(C) in determining the requisite scaling and the resulting time

scale structure. Sannuti and Wason have investigated this point in the

special case in which R(E) = ER is the only e-dependence (see also the

closely related and important work of Hautus and Silverman ). We are now

involved in examination of the general problem we have posed using the

algebraic framework we have developed, and the extension of this problem

.-, to include S-dependent observations in order to achieve our objective of

developing a complete picture of the interplays among scales on open-loop

dynamics, control effectiveness, observability, and weightings on inputs

and states.

We have also made progress in our research involving estimation of

finite-state Markov processes (FSMP's) possessing several time scales.

The basis for this research is the methodology developed in [2] which

uses our results on decomposing systems of the form (1.1) and the basic

properties of FSMP's to construct a hierarchy of simpler, aggregated models

of FSMP's which contain rare transitions. Each model ignores transitions

that occur at a time scale far greater than the one with which the model

kis concerned and aggregates the effects of transitions that occur at faster

SM.L.J. Hautus and L.M. Silverman, "System Structure and Singular Control,"

Linear Algebra & Applications, Vol. 50, pp. 369-402, 1983.
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scales. The existence of such a hierarchy suggests the use of estimator

structures which take advantage of such a decomposition of the underlying

process, thereby offering the possibility of reducing extremely complex

estimation problems to sets of far simpler ones.

Our research in this area has consisted of two distinct pieces.

One the one hand we have made progress in performing detailed asymptotic

analyses of very simple singularly perturbed FSMP estimation problems [12]

and this work has produced both several important insights into what types

of performance measures are important for such estimators and an analytical

approach for calculating asymptotic approximations to such measures. The

other portion of our work (8], [10] has dealt directly with a class of FSMP's

of great complexity but which also possess important structural features.

Our objective in this area has been to develop estimator structures that

take direct advantage of this structure. By doing so, it has been our

hope to uncover important principles and concepts that could then be used

both for designing estimators for other classes of problems and for suggesting

promising and important theoretical directions.

The research described in [10] has as its motivation the automated

analysis of electrocardiograms (ECG's). Our reason for choosing this

focus is not only that ECG analysis is an important and challenging problem

but also that it is necessary to establish a context for an investigation

of this type. The class of "large and complex FSMP's" is far too amorphous

to yield interesting insights and analysis; what is needed is to define

a structured class of FSMP's with clear estimation objectives. Thus an

accurate statement is that ECG analysis has guided the choices of estimation

structures and problems we are investigating, but that the class of problems

we are considering is by no means restricted to ECG analysis and includes

:.,, .*. ,e, .%. . .~* % ,, . 4. . ,o. . .. . ,, . . , . , , , , .,.,,.,,, - .- -. . . - , o ,
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numerous other complex signal analysis problems as well as topics such as

*i multitarget tracking and complex queueing networks.

To be more specific, the problems we have been analyzing are hybrid in

nature -- that is, they involve both discrete- and continuous-valued

* processes, where one can think of sequences of discrete states as events

which influence the observed continuous waveforms. In particular, the type

of model that we are considering consists of an interconnection of discrete-

state processes where the state of one process can influence the transition

rates in the other processes (as we will point out shortly, this is precisely

how one can interpret the results of [2]), and particular transitions in

some of these processes initiate the generation of continuous waveforms.

The actual observation is the superposition of the continuous waveforms

that have been generated (just as the ECG is the superposition of the

measured electrical activity of the various regions the heart.

In [8], [10] a methodology is developed for modeling cardiac activity

and in particular its effect on the observed ECG using models of this type.

These models have several very important aspects. Two of these are timing

and control. The issue of control is related to the fact that the

electrical state of one portion of the heart -- represented by one of the

finite-state processes in the model -- can strongly influence the future

behavior of other portions of the heart. The issue of timing is concerned

with the fact that one can observe dramatic differences in the influence

the state of one portion of the heart can have on another, depending upon

the state the other portion is in (see [8] and [10] for numerous examples).

A third extremely important aspect of these cardiac models is that the time

scale at which interactions among the discrete models change and at which

continuous waveforms are initiated is far slower than the transition-by-

AL %i * *is
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transition scale at which each process evolves. It is this feature that

suggests a decomposition of the estimator (which processes the observed

ECG in order to track cardiac activity) in which the estimator for each

subprocess has a highly aggregated model of the remainder of the overall

process that is accurate enough at the coarse time scale at which it is

important. This leads to estimation structures consisting of interconnections

of discrete-state estimators which take as inputs the observed ECG and

estimates from other local estimators and which produce estimates of state

trajectories.

In the recent past we have been developing and analyzing estimators

for processes that possess the features we have just described. Our analysis

has been driven by concerns that differ from those which are usually

considered in examining estimator performance but which are quite natural

for discrete processes of the type we have described and in particular for

the ECG problem. In particular, in usual estimation problems one measures

performance by comparing the actual state and the estimate at a particular

point in time. In discrete event-oriented problems such as ECG analysis one

is more interested in the timing of events (especially those which determine

the control behavior of the heart). Thus one is concerned with errors in

time corresponding to particular values of the state or state transition.

That is, an estimate x may be considered to be quite good even if x(t) - x(t)

is often quite large if in fact the state and estimate trajectories have

only small time shifts between them. A second important performance measure

is error recovery, a concept that is most easily stated in coding terms.

Specifically, if we think of the observations (e.g. the ECG) as an encoding

of discrete events, then we would like our decoder (estimator) to have the

property that the occurrence of inevitable decoding errors should not lead

to long strings of subsequent decoding errors.

4 .4f . ~
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V The other portion of our research on FSMP's [12] deals with the detailed

asymptotic analysis of a simple FSMP estimation problem. While this problem

is not rich enough to capture all aspects of the concerns described in the

preceding paragraph, it has proved to be extremely useful in allowing us

). to begin to develop quantitative, analytic methods for problems of this type.

Just as in the control work described earlier in this section, our funda-

mental interest in this problem is to understand how process time scale,

observability (ir.e. measurement information rates) and estimation criterion

*interact.

A first problem considered in [12] is the simple two-state process

* **.*x(t) depicted in Figure 2.1 where Xand X are of the same order of magnitude
1. ,2

and where we have observations

dy(t) = h(x(t)dt + bdw(t) (2.16)

where E[dw 2(t)] = dt. Letting I1 = Prob {x(t) = ljy(s), O<s<tl (2.17)

i1  Prob {x(t) = i1y(s), 0<s<t}

we can write

d7t (t) = [-X 1 1(t) + X2(l- 1(t) ) ]d t

•. 1 (2.18)

+ [h(t) - h(T (t))I [dy(t) - h(r (t))dt]

where

(7 (Ct)) = h(1) i 1 (t) + h(2) (1-7T1 (t)) (2.19)

.'... As discussed in [121 there are four natural quantitative measures for the

performance of this filter:

(1) Filter bias. This is the distance between the equilibrium
value of 1 I (t) given that x(t) = 1 or 2 respectively and

I
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the corresponding boundary -- i.e. i 1 if x(t) = 1 or

= 0 if x(t) = 0. This yields a measure of the ability

to distinguish between the two states.

(2) Variance. The variance of deviations of i1 around its
equilibrium points excluding large deviations (i.e. false
alarms). This corresponds most closely to the usual notion
of estimation performance.

(3) Detection delays. The time it takes the filter to evolve from
one equilibrium point to a detection threshold near the other
equilibrium point following a transition in x (t).

(4) Mean time between false alarms. The expected time between
crossings of the threshold corresponding to the incorrect
value of a(t) given that x(t) has not changed.

All of these involve examining (2.18) assuming x(t) = 1 or x(t) - 2.

If x(t) = 1 over the interval of interest it (t) evolves according to

d1 t  [-X171(t) + 2 (1-7l(t))]dt

+ K 2t (t) (1-7T (t)) 2dt + K7 1(t) (1-7 l (t))dw(t) (2.20)

where

2 h(t)-h(t) 2
b 1 (2.21)

is the rate at which information is accumulated that distinguishes between

the hypotheses x(t) = 1 and x(t) = 2. If x(t) = 2 over the time interval,

then

dlt) W - IlT)W + X2(l-Tr(t))]dt
1 11 2 1

- K 2 (t)2 (1-t (t))dt + Kt 1 (t) (i-IT 1 (t))dw(t) (2.22)

Note that in either case it (t) is a diffusion process on the bounded domain

1

[0,1] and in fact the boundaries of this domain are so-called entrance

boundaries.

:
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The evaluation of the performance measures described previously involves

the detailed study of (2.20) and (2.22). For example, the equilibria required

to determine filter bias are the stationary points of deterministic systems

obtained by setting the noise terms to zero in these equations. Note also

that it is here that we begin to see a need for asymptotic analysis -- we

have two rates, one determined by K and one by 1 = (I + X2)/2. It should

therefore not be surprising that

K2 (2.23)

(which roughly has the interpretation as the expected amount of information

collected between x(t) Transitions ) is the critical quantity in evaluating

asymptotic approximations to the performance measures just described. In

particular, we have analyzed in detail the case where A 0(c), i.e. where

1
Y is large (0(-)). If we think of defining detection thresholds at values

71 = 6 and 71 = 1-6, we have determined that 6 must be chosen very carefully

as a function of £ in order to obtain detection delays that are small compared

to the time between transitions and also to avoid catastrophic streams of

false alarms. In particular a choice of 6(c) = 0(YVE) leads to detection

2delays which go to infinity but at a much slower rate ((-log6(s))/K ) than

the time between transitions (0(-)). Thus the estimator is correct "most

of the time". Also, with this choice of threshold there will be 0(i) false

alarm between x(t) transitions.

The problem just described serves as a first step in analyzing the

two-time-scale process (x 1 (t), x2 (t)) illustrated in Figure 2.2 with

measurements

dy (t) - h (x (t))dt + b dw (t) (2.24)

y dy2(t) = h 2(x 2(t))dt + b2dw2(t) (2.25)

2 2 2
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First note that using the analysis in [2] this process can be decomposed

into a hierarchy of two two-state process: a slow process corresponding

to transitions in x (t) and a fast process corresponding to x 2 (t). Note

that this structure is exactly of the form under investigation in [8],

[10] -- an interconnection of two processes in which rare transitions

in the x 1 (t) process influence the transition rates (VI and p2 VS. J1 and

T2) of the fast process.

* The structure of the estimator under investigation is the following:

(1) The measurements y 1 (t) are processed using the aggregate two-
state Markov model for x 1 (t) evolving at the slow time scale.
Since the difference between the actual evolution of x (t)
and that predicted by the approximate model is 0 (c), di
conclusions described previously for the two-state process
hold here as well.

(2) Given the estimate x (t), an estimate of x (t) is generated
by using y2 and the two-state model for x it) corresponding
to x (t). Performance here can be evaluated in a fashion similar
to tiat described for the process in Figure 2.1. Once can
evaluate the performance when x1 is correct or in error, but
the difference is significant only if the P's and n's are of
different orders of magnitude.

(3) The estimator structure described by (1), (2) is not nearly
optimal, but performs well under a wide range of conditions.
The reason for this suboptimality is that there may exist
nonnegligible information in y2 concerning x -- whether this
difference is significant or not depends on the size of the
differences between the V's and T's. Note that even if
this difference is of no major consequence for estimating
x2, it may be significant for estimating x1, since xI changes
at a far slower time scale (and thus information can be

accumulated over a much longer time period). We are presently
completing our analysis of how the information in y2 can be
incorporated into the estimation of xI . The basic idea is
the following. Let h (x ) be defined as the expected value
of h (x (t)) given that Ix is the correct value and x (t)2 2 1 2
has reached its ergodic distribution. That is

h (t) = h (1) + h 2 (2) (2.26)

2 22 ~ ~ '
h 2 2 1h2(2) = n-h h(1) + h- h(2) (2.27)
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Then the measurement y can be written as

dy 2 (t) = h2 (x1 (t))dt + [h 2 (x 2 (t)) - h2 (x(t))dt + b 2 dw2 (t) (2.28)
*- 4,

* Intuitively, if the information rate

2(1) - h2(2)

b2

is comparable to or greater than

h 1 ( 1 ) - h 1 ( 2 ) 1 2

b 
2

one would expect Y2 to be of value in estimating x I . Furthermore, if the

conditional distribution of x 1 evolves at a slower time scale than the

process x 2, one would expect that the term in brackets in (2.28) is
negligible as far as x I1 estimation is concerned (although it is all-important

. as far as the estimation of x 2 is concerned!). In this case, we can use the

',",,,"iapproximation

d_ d2lt) = h2 (xl1(t))dt + b 2dw 2(tW12.29)

ifor the x l-estimator which then has a form analogous to (2.18) except that

it is driven by bioth observations.

.p
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